最近和几个人聊天,大家对于活跃都有着自己的看法,此外因为一些标准的问题,不熟悉分析术语的很多人把活跃,留存等很多信息都搞混了.后来发现这是一个很现实的问题。在一些我 看来不是问题的问题都变成了问题了,因此在此特地说说活跃的事,帮助更多从事游戏数据分析的小白们成长。
究竟什么是活跃?在日常与外界合作过程中,我们经常日活跃、周活跃、月活跃等等信息,貌似听起来比较简单,但是真正如果自己实施操作统计数据时却发现自己又不懂这些定义,因此作为一些分析师、甚至开发人员就会发现很难去操作。以下我将描述三个活跃的定义、使用方式、分析方法以及注意事项,限于篇幅今天就说说日活跃的分析使用。
日活跃
统计标准
日活跃的统计标准有很多种,在RPG中有日活跃角色数和日活跃账号数。这类游戏由于存在创建角色的问题,所以一般会分成两种统计方式。一般比较多见的是日活跃账号数,可以认为就是日活跃用户数。当然,很多游戏室不存在这样的多角色概念,因此通用日活跃账号数来作为统计的标准为最佳。
当然,还有一种统计标准就是设备的唯一标示,比如MAC,这样统计日活跃设备数量,不过价值相对不大。
定义标准
统计日登录过游戏的账号数,此处要去重。
比如某日有1000个账号登录过游戏,总计登录次数为1600次
老活跃用户:如果粗略的计算,可以如下计算:
•日活跃用户数-日新登用户数-日回流用户
当然如果要精确衡量老用户规模,可以给予老用户定义,例如:
统计日登录游戏的用户,在此之前7日内再次登录过游戏(注意此处没有严格区分新登用户的情况,即也把新登用户的次日登录的部分计算为老用户,可按照实际需要提出此部分对于老用户的影响)。
下面我们通过几个曲线来简单说明一下怎么利用DAU分析问题。
首先我们要得到划定时间区段的DAU和DNU的曲线图,如下图:
在该图中,我们DAU和DNU的走势基本上是一致的,DNU对于DAU的影响还是比较大的,但是随着后期波动的减小,我们发现从106天到280天,两条曲线是呈现缓慢的下滑趋势的,但是这不足以说明问题,仔细观察,我们发现夹在两条曲线之间的面积是逐渐缩小的,而这部分面积就是DAU中除去DNU的部分,即我们可以认定是老用户的部分,这个面积的缩小,意味着用户的流失加剧,活跃用户的控制不得当,此外,也可能是新用户在短期内留存率不高引起的,那就需要结合留存率来看问题了,这里不讨论。
在发现上述的情况后,我们可以使用DAU-DNU的差值做一条曲线来进行分析这个问题。如下图所示:
可以很明显的看到,这个差值在逐渐走低,也就是说用户的活跃度是在下滑的,这个下滑可以认定是后期渠道导入用户质量不高造成的,也可以是产品本身的用户周期问题造成的。但是断定一点的是,这个时期,需要紧急的拉动用户规模增长,因此,可以看到,随后进行了两次相应的拉动,其规模有所提升。
此外,我们还要看一下新用户所占的比例曲线,如上文所述,基本维持在40%的水平上,但是有一个值得关注的是,当处于一个相对的稳定期时,即使有大范围的推广和拉动新登增长,那么这个比值的变化也不会太剧烈,唯一剧烈的原因就在于,原本游戏的老活跃用户规模就在下滑,流失较多。
当然了,用户的流失、产品的粘性等等都可以通过对DAU不同角度的解析获得相应的信息,这点也是要和其他数据结合来分析的,比如次日留存率,用户流失率、启动次数、登录时长分布等数据,找出来DAU中的虚假用户,例如1-3s用户非常多,那么在正常的网络和设计情况下,这种数据就可能是很多假用户造成的,也就是作弊行为。
再比如的情况,我们可以通过事件管理,区分推广和非推广时期的用户增长对DAU的影响,比如自然增长时期的新登用户对DAU的影响,判断DAU的质量,渠道的质量;或者推广时期的新登用户对DAU的影响情况分析。
如果需要的也可以结合用户的登录习惯,比如登录次数,登录天数等等数据进行忠诚活跃用户的阈值确定,以此来保证DAU的质量。
其实在DAU的背后,隐藏的问题和分析的要素很多,这个也是需要结合自己的业务需要来进行的,这里只是给大家提供一个分析的思路和方式。至于具体的问题,还要结合具体需求进行分析。不过话说回来,DAU的解析离不开细分数据和其他数据的支持,但是也是不一定一直细分进行数据的分析。因为有一些因素不是靠细分数据就一定能够得到的,还要经验积累,有关这部分的分析参见这里。
标签:西部数码 数据分析 数据应用